THE MOLE RATIO AND STOICHIOMETRY

Stoichiometry

Calculating the amounts of reactants and/or products that are involved in a reaction

How much do I have, need, or make?

STEPS

1. Know ions
2. Write formulas, cross over if needed
3. Predict products if needed
4. Balance
5. Find pathways and conversion factors
6. Dimensional analysis
7. Units!

Stoichiometry

We need a balanced equation before we can do stoichiometry.

The coefficients in the balanced equation gives insight into how much of each thing we need or make

Balanced Equation Coefficients

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

Can be thought of as how many molecules are needed

- 2 hydrogen molecules
- 1 oxygen molecule
- 2 water molecules

Balanced Equation Coefficients

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

Can ALSO be thought of as
how many MOLES of molecules

- 2 moles hydrogen molecules
- 1 moles oxygen molecule
- 2 moles water molecules

Mole Ratios The "KEY" to stoichiometry!

If I have 3 moles of this, how many moles of that do I have?

If I have 2 moles of this, how many moles of that can I make?

Mole Ratios
 $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$

Stoichiometry

Mole Ratios You can flip all mole ratios

2 moles H_{2} 1 mole O_{2}

2 moles H_{2}
 2 moles $\mathrm{H}_{2} \mathrm{O}$

1 mole O_{2}

2 moles $\mathrm{H}_{2} \mathrm{O}$

2 moles H_{2}

2 moles $\mathrm{H}_{2} \mathrm{O}$

1 mole O_{2}

Mole Ratios Write all the mole ratios

 $\mathbf{2 C} \mathbf{2}_{\mathbf{2}}+\mathbf{5 O} \mathbf{2} \mathbf{2} \mathrm{H}_{\mathbf{2}} \mathrm{O}+\mathbf{4 \mathrm { CO } _ { 2 }}$
2 mole $\mathrm{C}_{2} \mathrm{H}_{2}$
 5 moles O_{2}

5 moles O_{2}
 2 moles $\mathrm{H}_{2} \mathrm{O}$

$\frac{2 \text { mole } \mathrm{C}_{2} \mathrm{H}_{2}}{2 \text { moles } \mathrm{H}_{2} \mathrm{O}}$

$\frac{5 \text { moles } \mathrm{O}_{2}}{4 \text { moles } \mathrm{CO}_{2}}$

2 mole $\mathrm{C}_{2} \mathrm{H}_{2}$

4 moles CO_{2}

You either need to...

Write the formulas into your Dimensional Analysis Line Method set up OR
Use " A " and " B " in your Dimensional Analysis Line Method Set Up

$$
A=\text { known }
$$

$$
B=\text { unknown }
$$

Mole Ratios $\mathbf{2 C}_{2} \mathrm{H}_{2}+5 \mathrm{O}_{2} \rightarrow \mathbf{2 H} \mathrm{O}+4 \mathrm{CO}_{2}$

Can be used as conversion factors!
How many moles of carbon dioxide can be made from 19.46 moles of oxygen gas?
19.46 moles $^{\mathrm{O}_{2}}$

4 moles $\mathrm{CO}_{2}=15.57$
5 moles O_{2}

Mole Ratios $\mathbf{2 C}_{2} \mathrm{H}_{2}+5 \mathrm{O}_{2} \rightarrow \mathbf{2 H} \mathrm{O}+4 \mathrm{CO}_{2}$

 Can be used as conversion factors!If you made 13.42 moles of water, how many moles of oxygen gas did you start with?

What if you don't want your answer in moles? What if you weren't given moles?

THE MOLE HIGHWAY All roads lead to the mole!

YouTube link to Presentation

https://youtu.be/qz2uDkBnXtw

